In the Millikan oil-drop experiment illustrated in the figure below, an atomizer (a sprayer with a fine nozzle) is used to introduce many tiny droplets of oil between two oppositely charged parallel metal plates. Some of the droplets pick up one or more excess electrons. The charge on the plates is adjusted so that the electric force on the excess electrons exactly balances the weight of the droplet. The idea is to look for a droplet that has the smallest electric force and assume it has only one excess electron. Suppose we are using an electric field of 7.40 ✕ 104 N/C. The charge on one electron is 1.60 ✕ 10−19 C. Calculate the radius of an oil drop of density 888 kg/m3 for which its weight could be balanced by the electric force of this field on one electron.

Glencoe Physics: Principles and Problems, Student Edition
1st Edition
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Paul W. Zitzewitz
Chapter19: Interference And Diffraction
Section: Chapter Questions
Problem 44A
icon
Related questions
Question

In the Millikan oil-drop experiment illustrated in the figure below, an atomizer (a sprayer with a fine nozzle) is used to introduce many tiny droplets of oil between two oppositely charged parallel metal plates. Some of the droplets pick up one or more excess electrons. The charge on the plates is adjusted so that the electric force on the excess electrons exactly balances the weight of the droplet. The idea is to look for a droplet that has the smallest electric force and assume it has only one excess electron. Suppose we are using an electric field of 7.40 ✕ 104 N/C. The charge on one electron is 1.60 ✕ 10−19 C. Calculate the radius of an oil drop of density 888 kg/m3 for which its weight could be balanced by the electric force of this field on one electron.

 
Oil droplets
Pinhole
d
Telescope with
scale in eyepiece
Light
Transcribed Image Text:Oil droplets Pinhole d Telescope with scale in eyepiece Light
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Electric field
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill
University Physics Volume 3
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College
Inquiry into Physics
Inquiry into Physics
Physics
ISBN:
9781337515863
Author:
Ostdiek
Publisher:
Cengage