Overall, 80% of the energy used by the body must be eliminated as excess thermal energy and needs to be dissipated. The mechanism elimination are radiation, evaporation of sweat (2,430 kJ/kg), evaporation from the lungs (38 kJ/h), conduction, and convection. A person working out in a gym has a metabolic rate of 2,500 kJ/h. His body temperature is 37°C, and the outside temperature 28°C. Assume the skin has an area of 2.0 m² and emissivity of 0.97. (= 5.6696 x 108 W/m²K4) (a) At what rate is his excess thermal energy dissipated by radiation? (Enter your answer to at least one decimal place.) W (b) If he eliminates 0.32 kg of perspiration during that hour, at what rate is thermal energy dissipated by evaporation of sweat? (Enter your answer to at least one decimal place.) W (c) At what rate is energy eliminated by evaporation from the lungs? (Enter your answer to at least one decimal place.) W (d) At what rate must the remaining excess energy be eliminated through conduction and convection? W

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Overall, 80% of the energy used by the body must be eliminated as excess thermal energy and needs to be dissipated. The mechanisms of
elimination are radiation, evaporation of sweat (2,430 kJ/kg), evaporation from the lungs (38 kJ/h), conduction, and convection.
A person working out in a gym has a metabolic rate of 2,500 kJ/h. His body temperature is 37°C, and the outside temperature 28°C.
Assume the skin has an area of 2.0 m² and emissivity of 0.97. ( = 5.6696 x 108 W/m². K4)
(a) At what rate is his excess thermal energy dissipated by radiation? (Enter your answer to at least one decimal place.)
w
(b) If he eliminates 0.32 kg of perspiration during that hour, at what rate is thermal energy dissipated by evaporation of sweat?
(Enter your answer to at least one decimal place.)
w
(c) At what rate is energy eliminated by evaporation from the lungs? (Enter your answer to at least one decimal place.)
W
(d) At what rate must the remaining excess energy be eliminated through conduction and convection?
W
Transcribed Image Text:Overall, 80% of the energy used by the body must be eliminated as excess thermal energy and needs to be dissipated. The mechanisms of elimination are radiation, evaporation of sweat (2,430 kJ/kg), evaporation from the lungs (38 kJ/h), conduction, and convection. A person working out in a gym has a metabolic rate of 2,500 kJ/h. His body temperature is 37°C, and the outside temperature 28°C. Assume the skin has an area of 2.0 m² and emissivity of 0.97. ( = 5.6696 x 108 W/m². K4) (a) At what rate is his excess thermal energy dissipated by radiation? (Enter your answer to at least one decimal place.) w (b) If he eliminates 0.32 kg of perspiration during that hour, at what rate is thermal energy dissipated by evaporation of sweat? (Enter your answer to at least one decimal place.) w (c) At what rate is energy eliminated by evaporation from the lungs? (Enter your answer to at least one decimal place.) W (d) At what rate must the remaining excess energy be eliminated through conduction and convection? W
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 14 images

Blurred answer
Knowledge Booster
Available Energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY