C.D. Warner, et al., comp. The Library of the World’s Best Literature.
An Anthology in Thirty Volumes. 1917.
Of the Nature of the Checks to Increase
By Charles Darwin (18091882)
T
The amount of food for each species of course gives the extreme limit to which each can increase; but very frequently it is not the obtaining food, but the serving as prey to other animals, which determines the average numbers of a species. Thus there seems to be little doubt that the stock of partridges, grouse, and hares in any large estate depends chiefly on the destruction of vermin. If not one head of game were shot during the next twenty years in England, and at the same time if no vermin were destroyed, there would in all probability be less game than at present, although hundreds of thousands of game animals are now annually shot. On the other hand, in some cases, as with the elephant, none are destroyed by beasts of prey; for even the tiger in India most rarely dares to attack a young elephant protected by its dam.
Climate plays an important part in determining the average numbers of a species, and periodical seasons of extreme cold or drought seem to be the most effective of all checks. I estimated (chiefly from the greatly reduced numbers of nests in the spring) that the winter of 1854–5 destroyed four-fifths of the birds in my own grounds; and this is a tremendous destruction, when we remember that ten per cent. is an extraordinarily severe mortality from epidemics with man. The action of climate seems at first sight to be quite independent of the struggle for existence; but in so far as climate chiefly acts in reducing food, it brings on the most severe struggle between the individuals, whether of the same or of distinct species, which subsist on the same kind of food. Even when climate,—for instance, extreme cold,—acts directly, it will be the least vigorous individuals, or those which have got least food through the advancing winter, which will suffer most.
When we travel from south to north, or from a damp region to a dry, we invariably see some species gradually getting rarer and rarer, and finally disappearing; and the change of climate being conspicuous, we are tempted to attribute the whole effect to its direct action. But this is a false view; we forget that each species, even where it most abounds, is constantly suffering enormous destruction at some period of its life, from enemies or from competitors for the same place and food; and if these enemies or competitors be in the least degree favored by any slight change of climate, they will increase in numbers; and as each area is already fully stocked with inhabitants, the other species must decrease. When we travel southward and see a species decreasing in numbers, we may feel sure that the cause lies quite as much in other species being favored as in this one being hurt. So it is when we travel northward; but in a somewhat lesser degree, for the number of species of all kinds, and therefore of competitors, decreases northward; hence in going northward, or in ascending a mountain, we far oftener meet with stunted forms, due to the directly injurious action of climate, than we do in proceeding southward or in descending a mountain. When we reach the arctic regions, or snow-capped summits, or absolute deserts, the struggle for life is almost exclusively with the elements.
That climate acts in main part indirectly by favoring other species, we clearly see in the prodigious number of plants which in our gardens can perfectly well endure our climate, but which never become naturalized, for they cannot compete with our native plants nor resist destruction by our native animals.
When a species, owing to highly favorable circumstances, increases inordinately in numbers in a small tract, epidemics—at least, this seems generally to occur with our game animals—often ensue; and here we have a limiting check independent of the struggle for life. But even some of these so-called epidemics appear to be due to parasitic worms, which have from some cause, possibly in part through facility of diffusion amongst the crowded animals, been disproportionally favored: and here comes in a sort of struggle between the parasite and its prey.
On the other hand, in many cases, a large stock of individuals of the same species, relatively to the numbers of its enemies, is absolutely necessary for its preservation. Thus we can easily raise plenty of corn and rape-seed, etc., in our fields, because the seeds are in great excess compared with the number of birds which feed on them; nor can the birds, though having a superabundance of food at this one season, increase in number proportionally to the supply of seed, as their numbers are checked during winter; but any one who has tried, knows how troublesome it is to get seed from a few wheat or other such plants in a garden: I have in this case lost every single seed. This view of the necessity of a large stock of the same species for its preservation, explains I believe some singular facts in nature, such as that of very rare plants being sometimes extremely abundant in the few spots where they do exist; and that of some social plants being social, that is, abounding in individuals, even on the extreme verge of their range. For in such cases, we may believe that a plant could exist only where the conditions of its life were so favorable that many could exist together and thus save the species from utter destruction. I should add that the good effects of inter-crossing, and the ill effects of close inter-breeding, no doubt come into play in many of these cases; but I will not here enlarge on this subject.