Physics for Scientists and Engineers
Physics for Scientists and Engineers
6th Edition
ISBN: 9781429281843
Author: Tipler
Publisher: MAC HIGHER
bartleby

Videos

Question
Book Icon
Chapter 18, Problem 76P
To determine

The total work done by the gas and heat absorbed by gas in each portion of cycle.

Expert Solution & Answer
Check Mark

Answer to Problem 76P

The total work done is 6.62kJ . The heat absorbed at point A, B, C and D are 13.2kJ , 15.0kJ , 6.58kJ and 15.0kJ respectively.

Explanation of Solution

Given:

The initial pressure is 2.00atm .

The temperature is 360K

Formula used:

The expression for volume at D is given by,

  VD=nRTDPD

The expression for pressure at point C is given by,

  PC=nRTCVC

The expression for temperature at point A and B is given by,

  TA=PAVAnR

The expression for heat absorbed at D is given by,

  QD=52nRΔTD

The expression for heat absorbed at A is given by,

  QA=nRTAlnVBVA

The expression for heat absorbed at B is given by,

  QB=52nR(TCTB)

The expression for heat absorbed at C is given by,

  QC=nRTClnVDVC

The expression for total work done is given by,

  Wbytot=WA+WB+WC+WD

Calculation:

The volume at point D is calculated as,

  VD=nRTDPD=( 2mol)( 8.314J/ mol K)( 360K)( ( 2.0atm )( 101.3kPa 1atm ))=29.5L

The pressure at point C is calculated as,

  PC=nRTCVC=( 2mol)( 8.314J/ mol K)( 360K)( 3 V D )=( 2mol)( 8.314J/ mol K)( 360K)( 3( ( 29.5L )( 101.3atm 1L ) ))=0.667atm

The temperature at point A and B is calculated as,

  TA=PAVAnR=( 1.33atm)( 88.6L)( 2mol)( 8.206× 10 2 Latm/ molK )=720K

The heat absorbed at point D is calculated as,

  QD=52nRΔTD=32(2mol)(8.314J/molK)(720K360K)=(( 15.0× 10 3 J)( 10 3 kJ 1kJ ))=15.0kJ

The heat absorbed at point A is calculated as,

  QA=nRTAlnVBVA=(2mol)(8.314J/molK)(720K)ln( 88.6L 29.5L)=(( 13.2× 10 3 J)( 10 3 kJ 1kJ ))=13.2kJ

The heat absorbed at point B is calculated as,

  QB=52nRΔTC=52(2mol)(8.314J/molK)(720K360K)=(( 15.0× 10 3 J)( 10 3 kJ 1kJ ))=15.0kJ

The heat absorbed at point C is calculated as,

  QC=nRTClnVDVC=(2mol)(8.314J/molK)(360K)ln( 29.5L 88.6L)=(( 6.58× 10 3 J)( 10 3 kJ 1kJ ))=6.58kJ

The total work done is calculated as,

  Wbytot=WA+WB+WC+WD=0+13.2kJ+06.58kJ=6.62kJ

Conclusion:

Therefore, the total work done is 6.62kJ . The heat absorbed at point A, B, C and D are 13.2kJ , 15.0kJ , 6.58kJ and 15.0kJ respectively.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
The temperature of an ideal gas is raised from 298 K to 402 K in a process that increases the heat content of the gas by 1000 J. What is the = -R for the gas, and these are constant. Hint: It will be 2 work performed on the system by this process? Assume that c 'y helpful to evaluate AU for this process. 3 =-R and C R
An ideal gas expands isothermally, performing 5.00×103 J of work in the process.  Part A Calculate the change in internal energy of the gas. Part B Calculate the heat absorbed during this expansion.
1.50 mol of an ideal gas with a constant ratio of heat capacities at constant pressure and volume y =2 = 1.40 is taken through the (reversible) cycle shown in the figure below. The process A - B is an expansion at constant temperature, whereas B →C and C → A are constant-pressure compression and constant-volume processes, respectively. 040 a) What is the temperature TA of the gas at A? P (atm) For the cycle as a whole, Isothermal b) calculate the (net) work done W (by the gas), 04021 c) calculate the (total) heat transfer Q, process d) find the change in the (internal) energy U of the gas, B e) verify that the 1" law of thermodynamics C is satisfied. 1 liter=1.00x10 m , 1 atm=1.01x105 N/m² , kɛ = 1.38x1023 J/K , NA=6.02x1023 mol. -V (liters) 50 10

Chapter 18 Solutions

Physics for Scientists and Engineers

Ch. 18 - Prob. 11PCh. 18 - Prob. 12PCh. 18 - Prob. 13PCh. 18 - Prob. 14PCh. 18 - Prob. 15PCh. 18 - Prob. 16PCh. 18 - Prob. 17PCh. 18 - Prob. 18PCh. 18 - Prob. 19PCh. 18 - Prob. 20PCh. 18 - Prob. 21PCh. 18 - Prob. 22PCh. 18 - Prob. 23PCh. 18 - Prob. 24PCh. 18 - Prob. 25PCh. 18 - Prob. 26PCh. 18 - Prob. 27PCh. 18 - Prob. 28PCh. 18 - Prob. 29PCh. 18 - Prob. 30PCh. 18 - Prob. 31PCh. 18 - Prob. 32PCh. 18 - Prob. 33PCh. 18 - Prob. 34PCh. 18 - Prob. 35PCh. 18 - Prob. 36PCh. 18 - Prob. 37PCh. 18 - Prob. 38PCh. 18 - Prob. 39PCh. 18 - Prob. 40PCh. 18 - Prob. 41PCh. 18 - Prob. 42PCh. 18 - Prob. 43PCh. 18 - Prob. 44PCh. 18 - Prob. 45PCh. 18 - Prob. 46PCh. 18 - Prob. 47PCh. 18 - Prob. 48PCh. 18 - Prob. 49PCh. 18 - Prob. 50PCh. 18 - Prob. 51PCh. 18 - Prob. 52PCh. 18 - Prob. 53PCh. 18 - Prob. 54PCh. 18 - Prob. 55PCh. 18 - Prob. 56PCh. 18 - Prob. 57PCh. 18 - Prob. 58PCh. 18 - Prob. 59PCh. 18 - Prob. 60PCh. 18 - Prob. 61PCh. 18 - Prob. 62PCh. 18 - Prob. 63PCh. 18 - Prob. 64PCh. 18 - Prob. 65PCh. 18 - Prob. 66PCh. 18 - Prob. 67PCh. 18 - Prob. 68PCh. 18 - Prob. 69PCh. 18 - Prob. 70PCh. 18 - Prob. 71PCh. 18 - Prob. 72PCh. 18 - Prob. 73PCh. 18 - Prob. 74PCh. 18 - Prob. 75PCh. 18 - Prob. 76PCh. 18 - Prob. 77PCh. 18 - Prob. 78PCh. 18 - Prob. 79PCh. 18 - Prob. 80PCh. 18 - Prob. 81PCh. 18 - Prob. 82PCh. 18 - Prob. 83PCh. 18 - Prob. 84PCh. 18 - Prob. 85PCh. 18 - Prob. 86PCh. 18 - Prob. 87PCh. 18 - Prob. 88PCh. 18 - Prob. 89PCh. 18 - Prob. 90PCh. 18 - Prob. 91PCh. 18 - Prob. 92PCh. 18 - Prob. 93PCh. 18 - Prob. 94PCh. 18 - Prob. 95PCh. 18 - Prob. 96PCh. 18 - Prob. 97PCh. 18 - Prob. 98P
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Thermodynamics: Crash Course Physics #23; Author: Crash Course;https://www.youtube.com/watch?v=4i1MUWJoI0U;License: Standard YouTube License, CC-BY