Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN: 9781305387102
Author: Kreith, Frank; Manglik, Raj M.
Publisher: Cengage Learning
bartleby

Videos

Textbook Question
Book Icon
Chapter 3, Problem 3.5P

In a ball-bearing production facility, steel balls that are each of 15 mm in diameter are annealed by first heating them to 870°C and then slowly cooling in air to 125°C. If the cooling air stream temperature is 60°C, and it has a convective heat transfer coefficient of 35  W/m 2 K , determine the time required for the cooling.

Blurred answer
Students have asked these similar questions
A small copper wire with a diameter of 0.792 mm and initially at 366.5 K is suddenly immersed in a liquid held constant at 311 K. The convection coefficient h = 85.2 W/m2 · K. The physical properties can be assumed constant and are k = 374 W/m · K, cp = 0.389 kJ/kg · K, and ρ = 8890 kg/m3. Determine the time in seconds for the average temperature of the wire to drop to 338.8 K (one-half the initial temperature difference). Do the same but for h=11.36W/m2·K. Forpart(b),calculate the total amount of heat removed for a wire 1.0 m long.
4- Carbon steel balls 8 mm in diameter are annealed by heating them first to 900°C in a furnace and then allowing them to cool slowly to 100°C in ambient air at 35°C. If the average heat transfer coefficient is 75 W/m -°C, determine how long the annealing process will take. If 2500 balls are to be annealed per hour Given: Carbon steel [k = 54 W/m.°C, p = 7833 kg/m, and C,= 0.465 kJ/kg. °C. and a= 1.474x 10* m²/s] Air, 35°C Fumace Steel ball 100°C 900°C
Humans are able to control their rates of heat production and heat loss to maintain a nearly constant core temperature of Tc = 37°C under a wide range of environmental conditions. This process is called thermoregulation. From the perspective of calculating heat transfer between a human body and its surroundings, we focus on a layer of skin and fat, with its outer surface exposed to the environment and its inner surface at a temperature slightly less than the core temperature, Ti = 35°C = 308 K. Consider a person with a skin/fat layer of thickness L = 2 mm and effective thermal conductivity k = 0.3 Wm ⋅ K. The person has a surface area A = 1.8 m2 and is dressed in a bathing suit. The emissivity of the skin is ε = 0.95.a). When the person is in still air at T∞ = 308 K, what is the skin surface temperature and rate of heat loss to the environment? Convection heat transfer to the air is characterized by a free convection coefficient of h = 2 W?2 ⋅ Kb). When the person is in water at T∞ =…
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license